
Final Exam, Algorithms II 2023-2024
Do not turn the page before the start of the exam. This document is double-sided,
has 12 pages, the last ones possibly blank. Do not unstaple.

• The exam consists of three parts. The first part consists of multiple-choice questions, the
second part consists of a short open question, and the last part consists of four open-ended
questions.

• For the open-ended questions, your explanations should be clear enough and in sufficient
detail that a fellow student can understand them. In particular, do not only give pseu-
docode without explanations. A good guideline is that a description of an algorithm should
be such that a fellow student can easily implement the algorithm following the description.

• You are allowed to refer to material covered in the lectures including algorithms and the-
orems (without reproving them). You are however not allowed to simply refer to material
covered in exercises/homework.

Good luck!
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Problem 1: Multiple Choice Questions (24 points)

For each question, select the correct alternative. Note that each question has exactly one
correct answer. Wrong answers are not penalized with negative points.

1a. General Knowledge (8 points). Select the correct answer.

A. Suppose that a randomized algorithm has success probability of o(1). Then we can boost
its success probability to a constant by doing at most poly(n) repetitions.

B. Solving the standard Linear Program for Vertex Cover on general graphs, requires expo-
nential running time in the worst case.

C. Consider a bipartite graph G and the standard matching polytope for G. There exists an
assignment of weights to the edges of G that makes the matching polytope non-integral.

D. Consider an online minimization problem and an online algorithm A. If for every instance
I it is true that A(I) ⩽ 2 · OPT(I) then A is 2-competitive.

E. Finding the maximum cut of a graph cannot be reduced to the maximization of a submod-
ular function.

Solution. The correct answer is D.

• Option A is incorrect because a success probability of 1/2n (which is o(1)) can not be
boosted to a constant only by poly(n) repetitions.

• Option B is false because any Linear Program can be solved in polynomial time.

• Option C is also incorrect. The weight vector does not influence the integrality of the
bipartite matching polytope in any way. It only determines the minimization direction.

• Option D is correct by the definition of the competitive ratio.

• Option E is also false because the function that maps a cut to the number of edges that
cross it is a submodular function (see Notes of Lecture 20, Section 1.1).
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1b. Matroids (8 points). Consider a ground set E and a family of independent sets I. Which
one of the following statements is correct?

A. Suppose that E is the vertex set of some graph G and I is the collection of all subsets of
vertices that share no edges between them. Then, (E, I) is a matroid.

B. Let w : E → R>0 be a non-negative weight function. We define the weight of a subset
of E to be the sum of weights of its elements. If for any such function w there exists a
maximum cardinality independent set that has maximum weight, then (E, I) is a matroid.

C. Let I100 denote the subcollection of I that contains all of its sets that have cardinality at
most 100 (that is I100 = {X ∈ I : |X| ⩽ 100}). If (E, I) is a matroid then (E, I100) is also
a matroid.

D. Suppose that M = (E, I) is a matroid. Then there exist two bases A and B with A ̸= B
such that either A ∪B is a base or A ∩B is a base.

E. Consider a partitioning of E into E1 and E2. Let I ′ be all the subsets of E that have at
least k1 elements from E1 and at least k2 elements from E2. Then, (E, I ′) is a matroid.

Solution. The correct answer is C.

• Option A is wrong because the augmentation property does not hold (e.g. on a star graph
the neighbors of a star node is an independent set and the central node is an independent
set but you can not augment it with any one of its neighbors). Also, if it was true then P
would be equal to NP because we could solve the maximum independent set problem in
polynomial time (as a matroid maximization problem).

• Option B is false. Consider E = {a, b} and I = {{a}, {a, b}}. The set {a, b} will always
have bigger weight than {a} under any non-negative weight function, however (E, I) is not
a matroid since I is not downwards closed.

• Option C is correct, (E, I100) is a truncated matroid (see Notes of Lecture 1, Section 3.1.4).

• Option D is incorrect, both A∪B and A∩B will have different sizes than |A| and therefore
can not be bases.

• Option E is false because I ′ is not downwards closed.
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1c. Spectral Graph Theory (8 points).

Let G be a connected d-regular graph with n vertices and let M be its normalized adjacency
matrix. Recall that the normalized adjacency matrix is equal to 1

dA, where A is the adjacency
matrix of the graph. Let 1 = λ1 ⩾ λ2 ⩾ . . . ⩾ λn be the eigenvalues of M and e1, . . . en ∈ Rn be
the corresponding unit-norm eigenvectors.
Each of the two images below were generated using the following procedure: Select two eigen-
vectors of M , let them be a and b. Place the i-th vertex of the graph at the position (a(i), b(i))
where a(i) is the value of the i-th dimension of eigenvector a (correspondigly for b). If vertices i
and j are connected with an edge, draw a line between (a(i), b(i)) and (a(j), b(j)).

(a) (b)

Select the correct answer.

A. Figure (a) was generated using the eigenvectors en−1 and en, while (b) was generated from
e2 and e3.

B. Figure (a) was generated using the eigenvectors en−1 and en, while (b) was generated from
e1 and e2.

C. Figure (a) was generated using the eigenvectors e2 and e3, while (b) was generated from
en−1 and en.

D. Figure (a) was generated using the eigenvectors e1 and e2, while (b) was generated from
en−1 and en.

E. The selection of eigenvectors does not influence the embedding in a systematic way.

Solution. The correct answer is C. When we draw the vertices using eigenvectors that correspond
to large eigenvalues of the normalized adjecency matrix, neighboring vertices tend to get mapped
to nearby positions whereas the oposite happens with small eigenvalues (see the Notes of Lecture
23).
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Problem 2: Short Open Question (11 points)

Consider a coverage problem on a ground set E of 8 elements and a collection U of 5 sets as
depicted below.

We define the coverage function f : {0, 1}5 → N as

f(x1, x2, x3, x4, x5) =

∣∣∣∣∣∣∣∣
⋃

j=1,...,5
s.t. xj=1

Sj

∣∣∣∣∣∣∣∣ .
In other words, f accepts a binary vector x with 5 terms, which denotes a subset of the family
U . The i-th set is included in the collection described by x if and only if xi = 1. For example,
(x1, x2, x3, x4, x5) = (0, 0, 1, 0, 1) corresponds to the collection {S3, S5}. The coverage function
then maps each such vector to the cardinality of the union of its sets. In the previous example,
f(0, 0, 1, 0, 1) = 3, because the union of S3 and S5 contains 3 elements.

Let f̂ : [0, 1]5 → R denote the Lovász extension of f . Calculate f̂(0.2, 0.9, 0, 0.8, 0.1).

Solution. Let us first rearrange the coordinates in non-increasing order: let z be the vector
z = (0.9, 0.8, 0.2, 0.1, 0) and let S′

1 = S2, S′
2 = S4, S′

3 = S1, S′
4 = S5, S′

5 = S3. Also let
f ′ : {0, 1} → N be the coverage function corresponding to the set system S′

1, . . . , S
′
5, and let

z6 = 0 for notation’s sake. Note that f(0, 0, 0, 0, 0) = f ′(0, 0, 0, 0, 0) = 0. Then we have

f̂(0.2, 0.9, 0, 0.8, 0.1) = f̂ ′(z)

=

5∑
i=1

(zi − zi+1)f
′({1, . . . , i})

= 0.1 · |S2|+ 0.6 · |S2 ∪ S4|+ 0.1 · |S2 ∪ S4 ∪ S1|+ 0.1 · |S2 ∪ S4 ∪ S1 ∪ S5|
= 0.1 · 2 + 0.6 · 6 + 0.1 · 6 + 0.1 · 8
= 5.2 .
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Problem 3: Estimating the mean (20 points)

Consider n values x1, . . . , xn ∈ [−1, 1] between −1 and 1. In this problem, our goal is to
approximate their mean µ =

∑n
i=1 xi/n by sampling.

A. (3 points) One estimator for µ is the following: sample one of the n points, let it be
xi, uniformly at random. Output µ̂ = xi. Show that this estimator is unbiased, that is
E[µ̂] = µ.

B. (5 points) Show that for the variance of µ̂ the following is true: Var(µ̂) ⩽ 1.

C. (12 points) Given ε > 0, use the unbiased estimator µ̂ to construct an estimator µ̂+ such
that the following holds with probability at least 0.9,

|µ− µ̂+| ⩽ ε .

Your estimator µ̂+ should use an asymptotically optimal number of samples.

Solution.

A. By the definition of the expectation,

E[µ̂] =
n∑

i=1

Pr[µ̂ = xi] · xi =
n∑

i=1

xi
n

= µ.

B. For the variance we have the following inequality,

Var[µ̂] = E[µ̂2]− E[µ̂]2 ⩽ E[µ̂2].

Since µ̂ ∈ [−1, 1], µ̂2 ⩽ 1. The bound on the variance follows.

C. For t ∈ N, let µ̂1, . . . , µ̂t be t independent realizations of the estimator µ̂. Define,

µ̂+ =
1

t

t∑
i=1

µ̂i.

The estimator µ+ remains unbiased by linearity of expectation. Moreover, the variance
decreases by a factor of 1

t ,

Var[µ̂+] =
1

t2

t∑
i=1

Var[µ̂i] ⩽
1

t
.

For the last inequality, we used the bound from Part B. By Chebyshev’s inequality,

Pr
[
|µ̂+ − µ| ⩾ ϵ

]
⩽

Var[µ̂+]

ϵ2
⩽

1

ϵ2t
.

Thus, choosing t = 10
ϵ2

gives the required bound on the probability.
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Problem 4: A Special Vertex Cover (15 points)

After taking the Algorithms II course, your friend Bob has become obsessed with the vertex
cover problem. In his latest attempt to tackle this question, he has achieved the following:

For a graph G = (V,E), Bob has constructed a distribution D over subsets of vertices T ⊆ V of
size k (|T | = k), such that if you sample a vertex set from D, then for every edge e = (u, v) ∈ E
it holds that

Pr[u ∈ T or v ∈ T ] ⩾ 0.99 .

That is, if we select a random set T from D then we are almost but not quite a vertex cover
since every edge is likely but not necessarily covered.

Your friend needs your help to analyze the size of a real vertex cover solution. Specifically, you
have to prove that, assuming the graph G is bipartite, his construction implies that the minimum
vertex cover of G has size at most k

0.99 .

1st Solution. Let pu be the marginal probability that u is picked when sampling a vertex set
T from the distribution D, that is

pu = Pr
T∼D

[u ∈ T ].

By the union bound, for every edge (u, v) the following is true

pu + pv ⩾ Pr
T∼D

[u ∈ T or v ∈ T ] ⩾ 0.99,

or equivalently
pu
0.99

+
pv
0.99

⩾ 1. (1)

Recall the LP relaxation of the Vertex Cover problem:

Minimize
∑
u∈V

xu

Subject to xu + xv ⩾ 1 ∀(u, v) ∈ E

Notice that the assignment xu = pu/0.99 is feasible because of (1). Let V C(G) denote the size
of the minimum vertex cover of G. We know that the Vertex Cover LP is integral on bipartite
graphs and that the optimal solution is smaller or equal to any feasible solution, therefore

V C(G) ⩽
∑
u∈V

pu
0.99

.

Finally, we can upper bound the size of the feasible solution that we constructed as∑
u∈V

pu
0.99

=
1

0.99
·
∑
u∈V

1 · pu =
1

0.99
ET∼D[|T |] =

k

0.99
.

By the former two equations we get that

V C(G) ⩽
k

0.99
.
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2nd Solution. Let M be a maximum matching of G and V (M) be the set of vertices of M. We
will calculate the expected number of vertices of V (M) that belong to a sampled vertex T ∼ D.

ET∼D [|T ∩ V (M)|] ⩾
∑

(u,v)∈M

1 · Pr
T∼D

[u ∈ T or v ∈ T ] ⩾ 0.99 · |M|.

Since E[|T ∩ V (M)|] ⩽ E[|T |], we get that

ET∼D[|T |] = k ⩾ 0.99 · |M|.

Finally, from König’s theorem we know that |M| = V C(G). Therefore,

V C(G) ⩽
k

0.99
.
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Problem 5: Alice and Bob (15 points)

In this problem, your goal is to design an efficient communication protocol where Alice sends a
short message to Bob, allowing him to output the correct answer with good probability. The setup
is as follows. Alice is given a vector a ∈ {1, 2, . . . , n}n. Bob is given a vector b ∈ {1, 2, . . . , n}n
and an index i. We emphasize that Alice has no information about Bob’s input and Bob has no
information regarding Alice’s input.

The protocol is as follows. As a function of her input, Alice randomly selects a message m,
consisting of O(log n) bits, and sends it to Bob. Then, based on his input and the message m,
Bob outputs “Identical” or “Far”. Your task is to explain and analyze a strategy of Alice and
Bob (also called a communication protocol) so that the output of Bob satisfies the following
guarantees:

• If ai = bi then Bob outputs “Identical” with probability at least 2/3.

• If |ai − bi| > ∥a−b∥2
10 then Bob outputs “Far” with probability at least 2/3.

Here, the probability is over the randomness of Alice, i.e., over the randomly selected message
m. We further remark that the length of the message m should always be at most O(log n) bits
and Bob may output anything if ai ̸= bi and |ai − bi| ⩽ ∥a−b∥2

10 .

Solution. Let t = 106 be a parameter. Alice samples t random and independent 4-wise hash
functions σr : [n] → {±1} for r ∈ [t] that assign signs of each of the n coordinates. Then,
for each r ∈ [t] she computes a sketch SA

r of her own vector, defined as SA
r :=

∑n
j=1 ajσr(j).

Then, she sends (σr)r∈[t] and (SA
r )r∈[t] to Bob. This message consists of O(log n) bits, since each

σr and SA
r require O(log n) bits to represent and t is a constant.

Upon receiving Alice’s message, for each r ∈ [t] Bob computes a sketch of his own vector
SB
r :=

∑n
j=1 bjσr(j), and a “shifted” sketch Qr := σr(i) · (SA

r − SB
r ), and averages it over r ∈ [t] to

get Q := 1
t

∑t
r=1Qr. Bob also computes the difference of his and Alice’s sketches Wr = SA

r −SB
r ,

and averages the square of these over r ∈ [t] to get W := 1
t

∑t
r=1W

2
r . Then, Bob outputs

“Identical” if Q2 ⩽ W/100, and he outputs “Far” otherwise.
Finally we discuss correctness. We claim that Q is an unbiased estimator of ai − bi: note

that by 4-wise independence of the σr’s (and in particular their 2-wise independence), for any
r ∈ [t] one has

E[Q] = E[Qr] =

n∑
j=1

E [σr(i) · σr(j)] · (aj − bj) = ai − bi .

We cannot use a Chernoff bound to show that Qr concentrates around its mean because the
signs (σr(j))j∈[n] are not independent. Instead we apply Chebyshev’s inequality to the average
Q of the Qr’s. To do so, first note that

Var [Qr] ⩽ E
[
Q2

r

]
=

∑
j,h∈[n]

E
[
σ2
r (i) · σr(j) · σr(h)

]
· (aj − bj)(ah − bh) = ∥a− b∥22 .

Hence, we have

Var [Q] ⩽
1

t
∥a− b∥22 ,

since the σr’s are independent of each other. Similarly, we have that W is an unbiased estimator
of ∥a− b∥22: for any r ∈ [t] we have

E[W ] = E[W 2
r ] =

∑
j,h∈[n]

E [σr(j) · σr(h)] · (aj − bj)(ah − bh) = ∥a− b∥22 ,
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and
Var [W ] =

1

t
Var[W 2

r ] =
1

t

(
E[W 4

r ]− E[W 2
r ]

2
)
⩽

2

t
∥a− b∥42 ,

where the last inequality follows by the same case analysis that we did for the AMS algorithm.
By Chebyshev’s inequality, we get that with probability at least 98/100 ⩾ 2/3 one has

|Q− (ai − bi)| ⩽
∥a− b∥2

100
and |W − ∥a− b∥22| ⩽

∥a− b∥22
100

.

We then have two cases to distinguish: if ai = bi then Q2 ⩽ ∥a− b∥22/10000 ⩽ W/100, so Bob
outputs “Identical”; if |ai − bi| > ∥a− b∥22/10 then Q2 ⩾ ∥a− b∥22/20 > W/100, so Bob outputs
“Far”.

Alternative solution. We briefly outline an alternative solution, which is more aligned with
what many students attempted. Alice computes 3 independent AMS sketches S1, S2, S3 of her
vector a, and sends them to Bob together with the random bits r1, r2, r3 used to construct these
AMS transforms. All in all, this takes O(ϵ−2 log 1/δ log n) bits, so choosing ϵ, δ ∈ (0, 1) to be
small enough constants satisfies the communitcation complexity requirement.

Then Bob uses S1 and r1 to compute an AMS sketch of a− b (this is possible since the AMS
sketch is a linear sketch), thus obtaining a (1± ϵ)-approximation W to ∥a− b∥2 with probability
1− δ (note that with here W is an estimator of the ℓ2 norm of a− b without squaring). Then,
Bob uses S2 and r2 to compute an AMS sketch of the vector a− b+W · ei (again, this is possible
since the AMS sketch is a linear sketch), where ei is the i-th coordinate vector, thus obtaining a
(1± ϵ)-approximation Q+1 to ∥a− b+W/10 · ei∥22 with probability 1− δ. Analogously, from S3

and r3 Bob computes a (1± ϵ)-approximation Q−1 to ∥a− b−W/10 · ei∥22 with probability 1− δ.
If ai = bi, then Q+1 = Q−1 = (1 + 1/100)∥a − b∥22. If ξ · (ai − bi) > ∥a − b∥2/10 for ξ ∈ {±1},
then Qξ = ∥a − b∥22 − 2(ai − bi)ξ ·W/10 +W 2/100 ⩽ (1 − (1 − 2ϵ)/100)∥a − b∥22. He can then
distinguish the two cases.
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Problem 6: Recycling (15 points)

The administration of Lausanne decided to install k ⩾ 1 recycling centers around the city. We
represent Lausanne as an undirected and connected graph G := (V,E), in which every vertex
v ∈ V represents an area of the city and every edge e ∈ E connects a pair of distinct areas. You
can assume that there are no self-loops or parallel edges in G. Furthermore, every area v ∈ V
has a potential P (v) ∈ R⩾0 of reducing pollution by recycling.

The administration has to choose a subset C ⊆ V of |C| = k areas in which recycling centers will
be installed. They ordered a study which led to the following insight: Assume that the closest
recycling center to an area v ∈ V is C(v) ∈ C, and let dist(v, C(v)) be the distance between v
and C(v) in the graph G. In particular, if v = C(v), i.e., v itself contains a recycling center,
then dist(v, C(v)) = 0. The study proved that the pollution reduction from area v is given by
P (v)/2dist(v,C(v)). Hence, the total amount of pollution reduction is:

success(C) :=
∑
v∈V

P (v)

2dist(v,C(v))
.

The administration wants to find a solution as close as possible to an optimal solution C∗ ⊆
V (consisting of k areas) which maximizes the above objective. However, the computational
resources of the administration are limited, and they cannot brute-force over all possible

(
n
k

)
solutions.

Help them out by providing a polynomial-time approximation algorithm (in both n and k)
which computes a solution C ⊆ V with the following guarantee:

success(C) ⩾

(
1− 1

e

)
success(C∗).

In other words, your algorithm should compute a (1−1/e) approximation of the optimal solution.
For full credit, you are required to explain your algorithm and to justify that its approximation
ratio is (1− 1/e).

Solution. We define the function success : 2V → Z⩾0 as in the problem statement for any
subset C ⊆ V of areas. If |C| = 0 and thus C = ∅, we define dist(v, C(v)) = ∞ for any v
and therefore success(C) = 0. We will prove that “success” is submodular and monotone, such
that the problem reduces to cardinality constrained monotone maximization of a submodular
function, with parameter k. We know from the lecture that Greedy is a (1− 1/e)-approximation
algorithm for this problem. Hence, it remains to prove the submodularity and monotonicity of
“success”.

We start with the latter. Let C1 ⊆ C2 ⊆ V . Then, for any v, we trivially have dist(v, C1(v)) ⩾
dist(v, C2(v)), such that:

P (v)

2dist(v,C1(v))
⩽

P (v)

2dist(v,C2(v))
.

By summing over the areas v ∈ V , this implies immediately success(C1) ⩽ success(C2).
We continue by proving submodularity. Let again C1 ⊆ C2 ⊆ V and consider an area

w ∈ V \ C2. Let C3 := C1 ∪ {w} and C4 := C2 ∪ {w}. We need to prove that:

success(C3)− success(C1) ⩾ success(C4)− success(C2). (2)
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By fixing a particular area v ∈ V , it suffices to prove:

P (v)

2dist(v,C3(v))
− P (v)

2dist(v,C1(v))
⩾

P (v)

2dist(v,C4(v))
− P (v)

2dist(v,C2(v))
, (3)

as then (2) follows by summing the above over areas v ∈ V . If P (v) = 0, then (3) follows
trivially, so assume w.l.o.g. that P (v) ̸= 0. Also, for simplifying the notation, let ci := Ci(v)
and di := dist(v, ci) for i ∈ {1, 2, 3, 4}. Then, (2) is equivalent to:

2−d3 − 2−d1 ⩾ 2−d4 − 2−d2 . (4)

To prove (4), we consider two cases. For case 1, assume that dist(v, w) ⩾ d2. Then, d4 =
min{d2, dist(v, w)} = d2, and therefore the RHS of (4) is 0. On the other hand, we have trivially
d3 = min{d1, dist(v, w)} ⩽ d1, which implies that the LHS of (4) is ⩾ 0.

For case 2, assume the complementary event that dist(v, w) < d2, which implies that d4 =
min{d2, dist(v, w)} = dist(v, w) and also d3 = min{d1, dist(v, w)} = dist(v, w). As d3 = d4, (4)
is equivalent to:

−2−d1 ⩾ −2−d2 ,

i.e. d1 ⩾ d2, which is obvious because C1 ⊆ C2.
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